Cost and Schedule Report Luminosity Projection

September 8, 2004 Jeff Spalding

Methodology

- The Plan: MS Project file maintained in Welcom Home repository
- Monthly Reports:
 - Progress % complete from L2/L3 managers using MSP
 - > Effort from each Division (to be consolidated)
 - > Actual cost from lab accounting system, currently via Excel
- Developing new cost reporting
 - > Difficulty in current system reporting across Divisions (esp labor)
 - Developed new WBS structure directly linked to cost codes to allow cross-division roll-up
 - > Required a major re-organization of WBS and cost codes (complete)
 - > Developing new tools for consolidating reporting (using Cobra)
- E-cool installation AIP
 - > Installation of electron cooling in the Recycler is now an AIP (Accelerator Improvement Project) with its own reporting, but remains embedded in the Run II Plan
- Additional help
 - > Ken Domann, Jeff Sims (AIP) in project office
 - > Dixon Bogert and Ann Nestander developing tools

Status Report

- Monthly status and report cycle
 - > Milestones
 - Progress: %complete and highlights/issues from L2/L3
 - Effort Report
 - > M&S Cost Report
- Present report at PMG and send a summary to DOE
- Currently in mid-statusing for end of August
- Data here is for the end of July status report
- Changes > threshold require Change Request document, presented at PMG and signed by Assoc Director
- CR required for release of contingency

Change Control

Change control thresholds from "Management Procedures For the Run II Upgrades", appendix to "The Run II Luminosity Upgrade", V2 sent to DOE Jan 04

Run II Luminosity Upgrade Change Control Thresholds	Fermilab Director, Run II Accelerator PMG	Run II Upgrade Project Manager		
Technical	Changes that affect ES&H requirements. Out-of-scope changes to upgrade collider capabilities or impact accelerator systems.	Changes that do not affect ES&H requirements and do not affect upgrade scope.		
Cost	Any increase by \$ 100 K or assignment of contingency of \$ 100 K to upgrade.	Draw on contingency up to assigned \$ 100 K level (cumulative).		
Schedule	Any change in the upgrade critical path or a primary milestone by more than 1 month.	Any change in a critical path for a sub-system or a lower level milestone by more than 1 month.		
Personnel	Any increase in required FNAL personnel of 10 % relative to the Resource-Loaded Schedule.	Any change in Level 2 subproject personnel of 10% for the year.		

All Milestones: Feb04 - Feb05

Progress

Planned work @39%, L2.5 managers report 38% (v3 baseline)

WBS		TEC	Actual %	Plan'd %	A/P %	
		(incl G&A)	BCWP/TEC	BCWS/TEC		
	Run II Upgrades	\$48,257,282	38%	39%	97%	
1	Luminosity Upgrades	\$40,629,308	40%	42 %	97%	
1.1	Protons on Pbar Target	\$4,192,894	51%	52%	98%	
1.1.1	Slip Stacking	\$1,648,489	94%	96%	98%	
1.1.2	Pbar Target & Sweeping	\$239,111	86%	85%	100%	
1.1.3	MI Upgrades	\$1,903,045	12%	12%	95%	
1.1.4	Booster-MI Cogging	\$74,850	98%	98%	101%	
1.1.5	Optical Transition Radiation Detectors	\$327,398	26%	25%	105%	
1.2	Pbar Acceptance	\$4,596,631	33%	36%	89%	balaind an lana
1.2.1	Lithium Lens Upgrades	\$1,350,884	35%	36%	99%	behind on long-
1.2.2	AP2 & Debuncher Acceptance	\$3,245,747	31%	37%	85%	← term study plan
1.3	Pbar Stacking & Cooling	\$10,421,044	47%	49%	97%	, ,
1.3.1	Stacking & Cooling Integration	\$414,491	70%	73%	96%	المحاجبة المحاجبة والمحاجبة المحاجبة
1.3.2	Debuncher Cooling	\$30,078	100%	100%	100%	design work just started
1.3.3	Stacktail Cooling	\$2,261,809	5%	8%	62%	<pre>expected to catch up</pre>
1.3.4	Recycler Stacking & Cooling	\$1,866,541	85%	86%	99%	'
1.3.5	Electron Cooling	\$4,466,748	60%	60%	101%	behind on BPM upgrade,
1.3.6	Rapid Transfers	\$1,381,376	15%	20%	71%	
1.4	Tevatron High Luminosity	\$19,295,445	36%	37%	97%	hall probes -added people
1.4.1	Beam Studies and Simulation	\$3,268,676	40%	40%	100%	*
1.4.2	Active Beam-Beam Compensation	\$3,250,776	11%	13%	87%	← TEL R&D behind in
1.4.3	Increased Helix Separation	\$4,442,218	27%	28%	98%	studies and hardware
1.4.4	Luminosity Leveling	\$13,241	0%	0%		
1.4.5	Improved Control & Diagnostics	\$6,355,721	48%	50%	96%	Review sched for Oct
1.4.6	Tevatron Vacuum Improvements	\$126,162	40%	34%	119%	
1.4.7	Tevatron Alignment	\$1,838,651	53%	52%	101%	
1.6	Project Management - Jeff Spalding	\$2,123,295	43%	43%	100%	*
2	Maintenance & Reliability	\$7,627,973	28%	27 %	102%	F

Labor Profile

Estimated base labor profile in FTE from RLS (FTE=work/0.85) · Notes:

Base profile is w/o labor contingency = schedule contingency

phase milestone contingency allows stretch ~ 3 months by end 04

and 6months by end 06

 Labor falls off as subprojects complete

 "Completion" = commissioned to the point that the system is put into HEP operation optimization may continue for many more months (a learning slope in the luminosity projection)

Labor: Estimate vs Actual

M&S Cost Report (July)

FY04 base estimate 87% obligated, total 47% obligated

	. ,	RLS Estimate (then yr\$) FY04 Obl+RIP Obl-						
					Obl+RIP		/Total Est	
Run II Upgrades		9,418	6,253	1,778	17,448	8,152	87%	47%
1	Luminosity Upgrades	7,799	4,689	650	13,138	6,578	84%	50%
1.1	Protons on Target	656	961	2	1,619	423	64%	26%
1.1.1	Slip Stacking	416	0	0	416	364	88%	88%
1.1.2	Pbar Target and Sweeping	42	11	2	54	15	34%	27%
1.1.3	MI Upgrades	26	950	0	976	0	0%	0%
1.1.4	Booster-MI Cogging	0	0	0	0	0	0%	0%
1.1.5	OTR	172	0	0	172	44	26%	26%
1.2	pbar Acceptance	503	441	433	1,378	371	74%	27%
1.2.1	LiLens	133	179	108	421	102	77%	24%
1.2.2	AP2 and DB Acceptance	370	262	325	957	269	73%	28%
1.3	pbar Stacking and Cooling	3,027	821	0	3,848	2,286	76%	59%
1.3.1	S&C Task Force	0	0	0	0	0	0%	0%
1.3.2	Debuncher Cooling	0	0	0	0	0	0%	0%
1.3.3	Stacktail Upgrade	933	503	0	1,436		74%	48%
1.3.4	Recycler Commissioning	257	0	0	257	203	79%	79%
1.3.5	Electron Cooling	1,511	86	0	1,597	1,339	89%	84%
1.3.6	Rapid Transfers	325	233	0	558	51	16%	9%
1.4	Tevatron High Luminosity	3,523	2,463	215	6,201	3,399	96%	55%
1.4.1	Beam Studies and Simulation	38	0	0	38	38	101%	101%
1.4.2	Active BBC	365	800	123	1,288	436	119%	34%
1.4.3	Increased Helix Separation	740	1,485	76	2,301	748	101%	33%
1.4.4	Luminosity Leveling	0	_	0	0	_	0%	0%
1.4.5	Improved Controls and Diagnostics	2,113	29	0	2,142	1,835	87%	86%
1.4.6	Tevatron Vacuum Improvements	154	0	0	154		118%	118%
1.4.7	Tevatron Alignment	114		16	278		139%	57%
1.6	Management	93	_	_	93		107%	107%
2	Reliability Upgrades	1,619	•	•	4,310	•	97%	37%
2.1	Vulnerability White Paper	797		•	2,736		100%	29%
2.2	Reliability Upgrades	821	751	2	1,574	773	94%	49%

M&S Guidance and Contingency

- Budget guidance including contingency = \$22,087K FY04-06
- Contingency is held by Fermilab Directorate and released via Change Request process
- Currently 50% contingency on estimate to complete (obligations)

M&S in Then Yr \$K	FY04	FY05	FY06	Total	Avail Cont
Budget Guidance	14,188	4,894	3,005		- 4,639
V3 Estimated Base	9,418	6,253	1,778	17,448	4,039
Est. To Complete	1,266	6,253	1,778	9,296	50%

V3 Luminosity Projection

Luminosity Projection

Our plan is to deliver the Design Projection also develop an understanding of fallback scenarios

In v3, mixed-source operation and the phased stacktail upgrade allow more natural introduction of key upgrades (e-cooling and Stacktail upgrades) and provide a more robust fall-back position

Three Curves

- Design Projection: electron cooling and Stacktail upgrade
- Black Projection: no electron cooling, mixed-source operation beyond 05 (20% gain), Deb→Acc acceptance solved
- Blue Projection: no electron cooling, Deb-Acc acceptance only minor improvements and no gain from mixed-source

All assume slip stacking and 100 HEP hrs per week average long-term

Weekly Luminosity

Integrated Weekly Luminosity (pb-1)

Integrated Luminosity

Total Luminosity (fb-1)

Parameters: Design Curve

	Phase	1	2	3	4_5	6		
average	Parameter	FY 04 Plan	Slip Stacking	Recycler Ecool + Stacktail tank move	Stacktail +Helix	Reliability	Units	merge
	Initial Luminosity	77	96	219	284	284	$x10^{30} cm^{-2} sec^{-1}$	
	Integrated Luminosity per week	12	17	38	50	50	pb ⁻¹	_
	Average Store Hours per Week	100	100	100	100	100	Hours	e-cool
	Store Length	25	20	20	15	15	Hours	
	Number of Protons per bunch	250	260	260	270	270	x10 ⁹	
	Number of Pbars per bunch	33	42	99	131	131	x10 ⁹	
	Zero Stack Stacking Rate	13	24	30	46	46	x10 ¹⁰ /hour	
	Average Stacking Rate	6	10	22	39	(39)	x10 ¹⁰ /hour	
	Stack Size transferred	158	201	447	589	(589)	x10 ¹⁰	
	Pbar Production	16	17	21	32	32	x10 ⁻⁶	
	Protons on Target	5.4	8	8	8	8	x10 ¹²	
	Pbar cycle time	2.4	2	2	2	2	Secs.	
	Pbar up time fraction	0.75	0.75	1	1	1		
	A->R Transfer interval			2.5	0.5	0.5	Hours	
	A->R Transfer efficiency			90	98	98	%	
	A->R Transfer Time			0.2	0.05	0.05	Hours	

Parameters in FY09

<u>Design</u>e-coolingand stacktail upgrade

Black

no e-cool nor stacktail upgrade gain from mixed-source D-A solved

Blue

no e-cool
nor stacktai upgrade
no gain from mixed-source
D-A only minor improvements

- Slip stacking at 8x10¹² ppp
- Deb & AP2 at 32π -mm-mrad
- Av. 5tk rate = 39x10¹⁰/hr
- Stk in Accum = 20×10^{10}
- Stk from Rec'r = 590x10¹⁰

- Slip stacking at 8x1012
- Debuncher & AP2 at 17π
- Av. 5tk rate = 13x10¹⁰
- Stk in Accum = 200x10¹⁰
- Stk from Rec'r = 123×10^{10}

- Slip stacking at 7×10^{12}
- Debuncher & AP2 at 17π
- Av. 5tk rate = 9x10¹⁰
- Stk in Accum = 183×10¹⁰
- Stk from Rec'r = 0×10^{10}

don't need increase in AP2 & DB admittance

Summary

- Status report versus v3
 - > On-track for all milestones
 - Labor resources ~ estimated need
 - Available contingency allows addition of instrumentation projects (OTR, BLM)
- The upgrade projects are making good technical progress
- V3 has schedule slip in e-cooling (nevertheless technical progress is very good)
- Compensate with phased plan for stacktail upgrade
- The design projection is still >8 fb⁻¹ for 2009
- New phasing along with improved reliability and mixedsource operation make the fall-back scenarios more robust,
 >4 fb⁻¹